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The Domany-Kinzel Cellular 
Automaton Phase Diagram 
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The boundaries between the three phases of the Domany-Kinzel probabilistic 
cellular automaton are determined with high accuracy via the gradient method. 
The difficulties the extrapolation to the thermodynamic limit are circumvented 
and the critical exponents are also presented. 
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Cellular au tomata  (CA) are discrete dynamical systems that find wide and 
general applications in science. ~1'2~ Since the dynamics is not  restricted to 
the usual Boltzmann weight and detailed balance, CA have been used to 
model out-of-equilibrium processes, and even one-dimensional CA can 
present complex behavior such as continuous phase transitions with critical 
exponents. The local rules of a CA can be deterministic or, in a more 
general case, probabilistic (PCA). A very interesting PCA is the so-called 
Domany-Kinze l  PCA. 13~ The probabi'listic cellular au tomaton  studied by 
Domany  and Kinzel consists of a linear chain of N sites ( i =  1, 2 ..... N). 
Each site may be in one of two states, tr i = 0, 1 (empty, occupied). The sites 
are updated in parallel at discrete time steps according to the conditional 
probabilities {P(ai_ l(t), ai+~(t) I a~(t+ 1))}, i.e., the state of a site at given 
time t + 1 will depend upon the state of the two nearest-neighbor sites at 
time t. In the isotropic case P(0, 1 I 1 ) = P( 1, 01 1 ) = p 1, P( l, 1 1 1 ) = p2, and 
P(0, 011)- -  0. 

The phase diagram of the Domany-Kinze l  PCA presents three dif- 
ferent phases depending on the values of (p l ,  p2). In the first phase, the 
asymptotic state ig homogeneous  with all sites set to 0 (fi'ozen phase). If the 
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values of p l  and p2 are increased the asymptotic state has a finite fraction 
of interchanging sites set to 1 (active phase). This phase transition was 
demonstrated by Domany and Kinzel t3J based on results from transfer 
matrix equations. Recently, Martins et aL ~4) by performing numerical simu- 
lations with systems up to N =  3200, found that the active phase can be 
split into two phases, called chaotic and nonchaotic, where the order param- 
eter is the distance between two different configurations (damage). Via 
larger numerical simulations (N > 104 sites), Kohring and Schreckenberg 15 
pointed out the difficulties in extrapolating the results from simulations to 
the thermodynamic limit due to the unusual finite-size effects, namely, the 
order parameters are not monotonic functions of the system size. Kohring 
and Schreckenberg studied numerically only the behavior in the line p2 = 0, 
a region where the paper of Domany and Kinzel is ambiguous. The results 
available do not rule out the existence of a critical point p24:0,  since 
numerical simulations close to p2 = 0 were not performed in refs. 4 and 5. 
The analytical results from ref. 5 show a tricritical point located at p2 = 1 
in a mean field approximation and at p2 = 0 using one step beyond (two- 
tree approximation)J 6J 

In this work we used both the gradient ~7~ and damage spreading in a 
gradient c8' techniques to determine, with high accuracy, the phase diagram 
of the Domany-Kinzel  PCA. These techniques were applied to determine 
the critical points of percolation, '7' the Kauffman model and the XOR-OR 
mixture, ~8~ and thermal phase transitions in ferromagnetic and spin-glass 
modelsJg.lol In order to apply that technique to the Domany-Kinzel  PCA, 
we adopted the time as second dimension (y direction, for instance), i.e., 
we stored L• steps in the time evolution of the system and we constructed 
a lattice with dimensions N •  L• Different strategies were adopted to 
study the two boundaries. Let us concentrate first on the frozen-active 
transition. For a given value of p2, each line of fixed x direction has a 
different value of p l. The site on the left boundary is fixed to zero and the 
state of one in the right boundary is set at random. The probability p l for 
the j th  site will be 

p l ( N ) - p l ( 1 )  
p l ( j )=p l (1 )+  ( j -  1) (I)  

N - 1  

We chose p 1 (1) < p 1, and p 1 (N) > p 1 c. Only a rough estimative of p 1 c is 
needed at this stage. The site on the left (right) boundary was considered 
as the zeroth [ ( N +  l ) th]  site. Typically we worked with a small N =  640 
lattice. The results are almost insensitive to the dimension N. We found the 
same results within the error bars for different N; therefore we choose 
N =  640 for the time saving (for smaller lattices the cluster of frozen sites 
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touches the boundaries frequently). In this strategy the thermodynamic 
limit is extrapolated by making the gradient 

V =  [ p l ( N ) - p l ( 1 ) ] / N  (2) 

go to zero. After waiting many time steps (10,000 in this work) we start to 
store the time evolution of the system. We measure both the number of 
sites belonging to this cluster and those that define the front of the cluster 
(this cluster is a compact one). From these quantities we can determine the 
critical point and the exponents. 18'91 The density p(j)  of frozen sites per line 
is shown in Fig. 1 for three different values of V. Using the scaling law 
proposed by da Silva and Herrmann, c8~ 

p ( p l )  = (Vpl) ~ .~[-(p 1 - p 1 c)(Vpl) --~'] (3) 

where ~ is a scaling function, one could extract the critical exponent 
/3 = x/y  and the transition point from the frozen to the active phase. 
Figure2 shows the data collapse for the parameters x = 0 . 1 9 _ 0 . 0 1 ,  
y = 0.79 _ 0.01, and pl,. = 0.675 + 0.008. The value found for/~ = 0.24 _ 0.02 
agrees well with the one found by Martins et al., /3 = 0.25_ 0.02. A more 
precise way to obtain the critical boundary is via the average position p,, 
of the boundary of the frozen cluster. ~8) After the thermalization, Pm 
evaluated from L.L time steps differs less than 0.01% from the L L/2. We 
used L• = 3000 in our simulations. Figure 3 show p,, as a function of V for 
different p2. From this plot we can estimate the value of p lc in the ther- 
modynamical limit, extrapolating to V = 0. For the limit cases p2 = 0 (1) 

Fig. 1. 
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Plot of p(j) (frozen cluster at left and damaged cluster at right) as a function ofpi(j) 
( i=  1 for the frozen cluster and i =  2 for the damaged one). 
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Fig. 2. 
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Scaling plot  for the parameters  x = 0.19, y =  0.8, and  p 1 c = 0.675 (p2  = 0.8). 

[pl, .  = 0.799_+ 0.002 (0.496__+ 0.005)], the agreement is excellent with the 
previous results p l , .=0 .8  (0.5). (3-~1 The phase diagram presented in Fig. 4 
is to be compared to the original results of Martins et al. 14) The shape of 
the frozen-active boundary from this work is more similar to the one found 
by transfer matrix equations/3) The shift in the critical boundary for inter- 
mediate values of p2 compared to the one found in ref. 4 can be explained 
by finite-size and time effects. Larger simulations have seen this displace- 
ment for p2=0.5 .  I~t) The shift is smaller close to the deterministic p2 
values, as we can expect due to stochastic effects, which are more impor- 
tant close to p2 =0.5 (there is no shift for the limit cases p 2 = 0  (1)). 

Fig. 3. 
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Average Pc as function of Vp for different p2  for the frozen-act ive ( O )  and the 
ac t ive-chaot ic  t ransi t ions ( [ ] ) .  
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Fig. 4. 
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Phase diagram of the Domany-Kinzel PCA: O and dotted lines, Martins eta/.; 
[] and full lines, this work. 

In order to check if this range of gradients corresponds to a region 
where finite-size effects are not so relevant, we performed simulations for 
three different sizes ( N =  320, 640, and 1024 sites). The results are shown 
in Fig. 5 and we can conclude that in this region finite-size effects do not 
seem to be important. The extrapolated values are p,. = 0.834(3), 0.832(2), 
and 0.833(3) for N =  320, 640, and 1024, respectively. These sizes are larger 
than the ones that present anomalous behavior. (5) We also tested the 
method using an orthogonal gradient, i.e., p I is kept fixed and the gradient 
is performed in the p2. The agreement is found within 0.1%, corroborating 
the high accuracy of our results. 
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Fig. 5. Plot of p 1,. as a function of Vpl for three different sizes, N = 320 (A),  640 (E3), and 

1024 (O). The solid line is a regression evaluated over the N = 640 data (p2 = 0.1 ). 
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We repeat the same procedure for the active--chaotic phase. For this 
case we studied the time evolution of two configurations that differ initially 
by only one site. This damage is kept during the evolution, i.e., these sites 
are not updated. The differences compared to frozen-active boundaries are: 
the damaged cluster is no longer compact, although we can still define the 
average position plc  of the damage boundary; and we had to systemize the 
orientation of the gradients: close to the p2 = 0 line the gradient is applied 
to pl  and close to the p l  = 1 the gradient is applied to p2. The damage 
cluster is not compact, so the determination of the exponents is not precise 
as in the frozen-active transition (see Fig. 1). The critical exponent of the 
order parameter ~u (damage per site) found was # = 0.37 ___ 0.05 and agrees 
very well with the one found by Martins et  al. c4~ The tricriticai point is 
located at (pl  =0.801 +0.002, p2 =0).  The other marginal point is located 
at (pl  = 1, p2=0.3147_0.0002) .  We can note a shift compared to ref. 4 
also in this transition and we attribute this result also to finite-size effects. 
The active-chaotic boundary is a monotonic function of p l as found in 
ref. 4 and opposite to what is suggested by analytical results in ref. 5. 

We have studied the frozen and damage boundaries into a gradient. 
The average concentration Pm for both transitions is determined with quite 
precise values ( ~ 0 . 1 % )  even for small lattices. With this powerful method 
we can. obtain the complete phase diagram, overcoming the difficulties 
pointed out by Kohring and Schreckenberg. Our simulations were carried 
out on Sun SPARC 2 workstations. For an N =  640 lattice, our multispin 
code updates 170 x 103 sites/sec. 

ACKNOWLEDGMENTS , 

This work is partially supported by Brazilian agencies CAPES and 
CNPq. The authors are indebted to C. Tsallis, M.L.  Martins, P. M. C. 
de Oliveira, and L. R. Silva for discussions. 

REFERENCES 

1. S. Wolfram, Theory and Appfications of Cellular Automata (World Scientific, Singapore, 
1986). 

2. D. Stauffer, J. Phys. A 24:909 (1991). 
3. E. Domany and W. Kinzel, Phys. Rev. Lett. 53:311 (1984); W. Kinzel, Z. Phys. B 58:229 

(1985). 
4. M. L. Martins, H. F. Verona de Rezende, C. Tsallis, and A. C. N. de Magalhhes, Phys. 

Rev. Lett. 66:2045 (1991). 



Domany-Kinzel CA Phase Diagram 1279 

5. G. A. Kohring and M. Schreckenberg, J. Phys. I (Paris) 2:2033 (1992). 
6. J. Cook and B. Derrida, J. Phys. A 23:1523 (1990). 
7. B. Sapoval, M. Rosso, and J.-F. Gouyet, J. Phys. Lett. (Paris) 46:L749 (1985). 
8. L. R. da Silva and H. J. Herrmann, J. Star. Phys. 52:463 (1988). 
9. N. Boissin and H. J. Herrmann, J. Phys. A 24:L43 (1991). 

10. G. G. Batrouni and A. Hansen, J. Phys. A 25:L1059 (1992). 
11. M. L. Martins, G. F. Zebende, T. J. P. Penna, and C. Tsallis, preprint (1993). 

Communicated by D. Stauffer 


